# Post-Hurricane Transmission Network Outage Management

#### Ali Arab<sup>1</sup>, Amin Khodaei<sup>2</sup>, Suresh K. Khator<sup>1</sup>, Kevin Ding<sup>3</sup>, and Zhu Han<sup>1</sup>

<sup>1</sup>University of Houston <sup>2</sup>University of Denver <sup>3</sup>CenterPoint Energy, Inc.





1



### Hurricane Ike





Photo Credit: www.centerpointenergy.com



### Aftermath of Hurricane





Photo Credit: http://users.ece.utexas.edu/~kwasinski



### **Problem Statement**

- Hurricane Strikes
- Generation units fail
- Substations fail
- Transmission lines fail
- How the limited restoration resources to be allocated?







#### The Proposed Framework



at ILLINOIS INSTITUTE OF TECHNOLOGY



## The Objective Function

- To minimize the repair costs
- To minimize the load interruption cost.



#### Load Balance and Power Flow Constraints

7

Load Balance



### Line Power Flow Constraint



The bus voltage angle constraint should also hold.





#### **Restoration Constraints**



## Simulation Results for IEEE 118-Bus

#### Setups:

| Unit Number | Time to Repair | Bus Number  | Time to Repair | Line Number | Time to Repair |
|-------------|----------------|-------------|----------------|-------------|----------------|
| G1          | 17             | B1          | 24             | L1          | 20             |
| G2          | 12             | B2          | 11             | L2          | 18             |
| G3          | 24             | B3          | 18             | L10         | 16             |
| G5          | 8              | B4          | 15             | L14         | 10             |
|             |                | B5          | 5              | L16         | 22             |
|             |                | B8          | 4              |             |                |
|             |                | <i>B</i> 11 | 22             |             |                |

#### **Results:**

| Scenario             | $R_t$ =50 | <i>R</i> <sub>t</sub> =75 | $R_t = 100$ | $R_t = 125$ | $R_t = 150$ |
|----------------------|-----------|---------------------------|-------------|-------------|-------------|
| Cost $(\times 10^3)$ | \$144,151 | \$140,910                 | \$140,070   | \$139,718   | \$139,718   |
| Interruption         | 46 hours  | 35 hours                  | 29 hours    | 24 hours    | 24 hours    |

The higher the restoration resource level, the lower the interruption time and cost.





## **Conclusions and Future Work**

- Restoration resource availability plays a significant role in system resiliency.
- Securing enough resources, significantly reduces the post-hurricane restoration time and cost.
- The stochastic nature of the problem will be considered in our future work.





# Thank you!



